Number of Paths(Java Solution)
2 min readJun 13, 2022
A Question on Pramp platform
There are three ways that you can solve it.
- Memoization + recursive function
static int[][] memo;
static int numOfPathsToDest(int n) {
// your code goes here
memo = new int[n][n];
for(int i = 0; i < n; i++){
Arrays.fill(memo[i], -1);
}
return dp(n - 1, n - 1);
} static int dp(int i, int j){
if(i < j || i < 0 || j < 0) return 0;
if(i == 0 && j == 0) return 1;
if(memo[i][j] != -1) return memo[i][j];
int record = dp(i - 1, j) + dp(i, j - 1);
memo[i][j] = record;
return record;
}
2. bottom-up dynamic programming( SC: O(n²) )
The solution below uses bottom-up dynamic programming algorithm to solve it. The time complexity here is O(n²) and the space complexity here is O(n²).
static int numOfPathsToDest(int n) {
// your code goes here
if(n == 1) return 1;
int[][] ans = new int[n][n];
ans[0][0] = 1;
for(int i = 0; i < n; i++){
for(int j = i; j < n; j++){
if(i > 0)
ans[i][j] += ans[i-1][j];
if(j > 0)
ans[i][j] += ans[i][j - 1];
}
}
return ans[n-1][n-1];
}
3. bottom-up dynamic programming( SC: O(n) )
The solution below is a bit optimized it by minimizing the space complexity into O(n).
static int numOfPathsToDest(int n) {
// your code goes here
if(n == 1) return 1;
int[] ans = new int[n];
ans[0] = 1;
for(int i = 0; i < n; i++){
for(int j = 0; j <= i; j++){
if(j > 0)
ans[j] += ans[j - 1];
}
}
return ans[n-1];
}